МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Кафедра	Радиосистем и обработки сигналов	
	(полное наименование кафедры)	

УТВЕРЖДЕН

на заседании кафедры № 9 от 15.04.2024

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

Технологии распознавания изображений и компьютерное зрение
(наименование дисциплины)
44.00.04.7
11.03.01 Радиотехника
(код и наименование направления подготовки / специальности)
Радиотехнические системы
(направленность / профиль образовательной программы)

1. Общие положения

Фонд оценочных средств (ФОС) по дисциплине используется в целях нормирования процедуры оценивания качества подготовки и осуществляет установление соответствия учебных достижений запланированным результатам обучения и требованиям образовательной программы дисциплины.

Предметом оценивания являются знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций у обучающихся.

Процедуры оценивания применяются в процессе обучения на каждом этапе формирования компетенций посредством определения для отдельных составных частей дисциплины методов контроля - оценочных средств.

Основным механизмом оценки качества подготовки и формой контроля учебной работы студентов являются текущий контроль успеваемости и промежуточная аттестация. Общие требования к процедурам проведения текущего контроля и промежуточной аттестации определяет внутренний локальный акт университета: Положение о текущем контроле успеваемости и промежуточной аттестации обучающихся. При проведении текущего контроля успеваемости и промежуточной аттестации студентов используется ФОС.

1.1. Цель и задачи текущего контроля студентов по дисциплине.

Цель текущего контроля - систематическая проверка степени освоения программы дисциплины «Технологии распознавания изображений и компьютерное зрение», уровня достижения планируемых результатов обучения - знаний, умений, навыков, в ходе ее изучения при проведении занятий, предусмотренных учебным планом.

Задачи текущего контроля:

- 1. обнаружение и устранение пробелов в освоении учебной дисциплины;
- 2. своевременное выполнение корректирующих действий по содержанию и организации процесса обучения;
- 3. определение индивидуального учебного рейтинга студентов;
- 4. подготовка к промежуточной аттестации.

В течение семестра при изучении дисциплины реализуется традиционная система поэтапного оценивания уровня освоения. За каждый вид учебных действий студенты получают оценку.

1.2. Цель и задачи промежуточной аттестации студентов по дисциплине.

Цель промежуточной аттестации – проверка степени усвоения студентами учебного материала, уровня достижения планируемых результатов обучения и сформированности компетенций на момент завершения изучения дисциплины.

Промежуточная аттестация проходит в форме зачета.

Задачи промежуточной аттестации:

- 1. определение уровня освоения учебной дисциплины;
- 2. определение уровня достижения планируемых результатов обучения и сформированности компетенций;
- 3. соотнесение планируемых результатов обучения с планируемыми результатами освоения образовательной программы в рамках изученной дисциплины.

2. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины

2.1.Перечень компетенций.

ОПК-3 Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности ПК-1 Способен выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ

2.2.Этапы формирования компетенций.

Таблица 1

Код компетенции	Этап формирования компетенции	Вид учебной работы	Тип контроля	Форма контроля
	теоретический (информационный)	лекции, самостоятельная работа	текущий	собеседование
ОПК-3, ПК-1	практико-ориентированный	практические (лабораторные) занятия, самостоятельная работа	текущий	домашнее задание
	оценочный	аттестация	промежу- точный	зачет

Применяемые образовательные технологии определяются видом контактной работы.

2.3.Соответствие разделов дисциплины формируемым компетенциям.

Этапами формирования компетенций является взаимосвязанная логическая последовательность освоения разделов (тем) учебной дисциплины.

Таблица 2

№	Раздел (тема)	Содержание раздела (темы) дисциплины	Коды
п/п	дисциплины		компетенций
1	Раздел 1. Основы цифрового представления изображений	Изображения в видимом и инфракрасном, микроволновом, радиоволновом диапазонах. Основные стадии цифровой обработки изображений. Компоненты системы обработки изображений. Строение человеческого глаза. Формирование изображения в глазу. Яркостная адаптация и контрастная чувствительность. Регистрация изображения с помощью линейки сенсоров Регистрация изображения с помощью матрицы сенсоров. Дискретизация и квантование изображения. Основные понятия, используемые при дискретизации и квантовании. Представление цифрового изображения. Пространственное и яркостное разрешения. Интерполяция цифрового изображения	ОПК-3, ПК-1

		1	
2	Раздел 2. Основные преобразования изображений	Некоторые фундаментальные отношения между пикселями. Соседи отдельного элемента. Смежность, связность, области и границы. Меры расстояния. Математический аппарат, применяемый в цифровой обработке изображений. Поэлементные и матричные операции. Линейные и нелинейные преобразования. Арифметические операции. Теоретико-множественные и логические операции. Пространственные операции. Векторные и матричные операции. Преобразования изображений. Вероятностные методы. Математический аппарат, применяемый в цифровой обработке изображений. Поэлементные и матричные операции. Линейные и нелинейные преобразования. Арифметические операции. Теоретико-множественные и логические операции. Пространственные операции. Векторные и матричные операции. Преобразования изображений. Вероятностные методы.	ОПК-3, ПК-1
3	Раздел 3. Яркостные преобразования	Некоторые основные градационные преобразования. Преобразование изображения в негатив. Логарифмическое преобразование. Степенные преобразования (гамма-коррекция). Кусочно-линейные функции преобразований. Видоизменение гистограммы. Эквализация гистограммы. Приведение гистограммы (задание гистограммы). Локальная гистограммная обработка. Использование гистограммных статистик для улучшения изображения.	ОПК-3, ПК-1
4	Раздел 4. Основы пространственной фильтрации	НМеханизмы пространственной фильтрации. Пространственная корреляция и свертка. Векторное представление линейной фильтрации. Формирование масок пространственных фильтров. Сглаживающие пространственные фильтры. Линейные сглаживающие фильтры. Фильтры, основанные на порядковых статистиках (нелинейные фильтры). Пространственные фильтры повышения резкости. Повышение резкости изображений с использованием вторых производных: лапласиан. Нерезкое маскирование и фильтрация с подъемом высоких частот. Использование производных первого порядка для (нелинейного) повышения резкости изображений: градиент. Комбинирование методов пространственного улучшения Применение нечетких методов для яркостных преобразований и пространственной фильтрации. Начала теории нечетких множеств. Использование нечетких множеств для яркостных преобразований. Использование нечетких множеств для пространственной фильтрации	ОПК-3, ПК-1

		· · · · · · · · · · · · · · · · · · ·	
5	Раздел 5. Основы частотной фильтрации	Последовательность шагов частотной фильтрации . Соответствие между пространственными и частотными фильтрами . Частотные фильтры сглаживания изображения . Идеальные фильтры низких частот. Фильтры низких частот Баттерворта. Гауссовы фильтры низких частот . Дополнительные примеры низкочастотной фильтрации . Повышения резкости изображений частотными фильтрами. Идеальные фильтры высоких частот . Фильтры высоких частот Баттерворта . Гауссовы фильтры высоких частот. Лапласиан в частотной области. Нерезкое маскирование, высокочастотная фильтрация с подъемом частотной характеристики, фильтрация с усилением высоких частот.	ОПК-3, ПК-1
6	Раздел 6. Морфологическая обработка изображений	Начальные сведения. Эрозия и дилатация. Двойственность. Размыкание и замыкание. Преобразование «попадание/пропуск». Некоторые основные морфологические алгоритмы. Выделение границ. Заполнение дырок. Выделение связных компонент. Выпуклая оболочка. Утончение. Утолщение. Построение остова. Усечение. Морфологическая реконструкция. Сводная таблица морфологических операций. Морфология полутоновых изображений. Эрозия и дилатация. Размыкание и замыкание. Некоторые основные алгоритмы полутоновой морфологии.	ОПК-3, ПК-1
7	Раздел 7. Сегментация изображений	Основы. Обнаружение точек, линий и перепадов. Обнаружение изолированных точек. Обнаружение линий. Модели перепадов. Простые методы обнаружения контурных перепадов. Более совершенные методы обнаружения контуров и нахождение границ. Пороговая обработка. Обоснование. Обработка с глобальным порогом. Метод Оцу оптимального глобального порогового преобразования. Применение сглаживания изображения для улучшения обработки с глобальным порогом.	ОПК-3, ПК-1
8	Раздел 8. Сегментация, области	Использование контуров для улучшения обработки с глобальным порогом. Обработка с несколькими порогами. Обработка с переменным порогом. Пороги, основанные на нескольких переменных. Сегментация на отдельные области. Выращивание областей. Разделение и слияние областей. Сегментация по морфологическим водоразделам. Исходные предпосылки. Построение перегородок. Алгоритм сегментации по водоразделам. Использование маркеров. Использование движения при сегментации. Пространственные методы. Частотные методы.	ОПК-3, ПК-1

	9	Раздел 9. Распознавание 3D объектов	сновы распознавания 3D изображений. Стерео зрение. Проекционные методы.	ОПК-3, ПК-1
1	10	Раздел 10. Применение методов обработки изображений	Примеры использования технологий. Перспективы развития	ОПК-3, ПК-1

3. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

3.1.Описание показателей оценивания компетенций на различных этапах их формирования.

Таблица 3

Код компе- тенции	Показатели оценивания (индикаторы достижения компетенций)	Оценочные средства
ОПК-3	ОПК-3.1 Использует информационно- коммуникационные технологии при поиске необходимой информации; ОПК-3.2 Знает современные принципы поиска, хранения, обработки, анализа и представления в требуемом формате информации; ОПК-3.3 Умеет решать задачи обработки данныхс помощью современных средств автоматизации; ОПК-3.4 Владеет навыками обеспечения информационной безопасности;	ТЕОРЕТИЧЕСКИЙ ЭТАП: собеседование ПРАКТИКО- ОРИЕНТИРОВАННЫЙ ЭТАП: домашнее задание ОЦЕНОЧНЫЙ ЭТАП: вопросы к зачету
ПК-1	ПК-1.1 Умеет строить физические и математические модели моделей, узлов, блоков радиотехнических устройств и систем; ПК-1.2 Владеет навыками компьютерного моделирования;	ТЕОРЕТИЧЕСКИЙ ЭТАП: собеседование ПРАКТИКО- ОРИЕНТИРОВАННЫЙ ЭТАП: домашнее задание ОЦЕНОЧНЫЙ ЭТАП: вопросы к зачету

3.2.Стандартные критерии оценивания.

Критерии разработаны с учетом требований ФГОС ВО к конечным результатам обучения и создают основу для выявления уровня сформированности компетенций: минимального, базового или высокого.

Критерии оценки устного ответа в ходе собеседования:

- логика при изложении содержания ответа на вопрос, выявленные знания соответствуют объему и глубине их раскрытия в источнике;
- использование научной терминологии в контексте ответа;
- объяснение причинно-следственных и функциональных связей;
- умение оценивать действия субъектов социальной жизни, формулировать собственные суждения и аргументы по определенным проблемам;
- эмоциональное богатство речи, образное и яркое выражение мыслей.

Критерии оценки ответа за зачет:

Для зачета в устном виде употребимы критерии оценки устного ответа в ходе собеседования (см. выше)

Критерии оценки лабораторной работы:

- Выполнение лабораторной работы (подготовленность к выполнению, осознание цели работы, методов собирания схемы, проведение измерений и фиксирования их результатов, прилежание, самостоятельность выполнения, наличие и правильность оформления необходимых материалов для проведения работы схема соединений, таблицы записей и т.п.);
- Оформление отчета по лабораторной работе (аккуратность оформления результатов измерений, правильность вычислений, правильность выполнения графиков, векторных диаграмм и др.);
- Правильность и самостоятельность выбора формул для расчетов при оформлении результатов работы;
- Правильность построения графиков, умение объяснить их характер;
- Правильность построения векторных диаграмм, умение их строить и понимание того, что они значат;
- Ответы на контрольные вопросы к лабораторной работе.

Общие критерии оценки работы студента на практических занятиях:

- Отлично активное участие в обсуждении проблем каждого семинара, самостоятельность ответов, свободное владение материалом, полные и аргументированные ответы на вопросы семинара, участие в дискуссиях, твёрдое знание лекционного материала, обязательной и рекомендованной дополнительной литературы, регулярная посещаемость занятий.
- Хорошо недостаточно полное раскрытие некоторых вопросов темы, незначительные ошибки в формулировке категорий и понятий, меньшая активность на семинарах, неполное знание дополнительной литературы, хорошая посещаемость.
- Удовлетворительно ответы отражают в целом понимание темы, знание содержания основных категорий и понятий, знакомство с лекционным материалом и рекомендованной основной литературой, недостаточная активность на занятиях, оставляющая желать лучшего посещаемость.
- Неудовлетворительно пассивность на семинарах, частая неготовность при ответах на вопросы, плохая посещаемость.

Порядок применения критериев оценки конкретизирован ниже, в разделе 4, содержащем оценочные средства для текущего контроля успеваемости и для проведения промежуточной аттестации студентов по данной дисциплине.

3.3.Описание шкал оценивания.

В процессе оценивания результатов обучения и компетенций на различных этапах их формирования при освоении дисциплины для всех перечисленных выше оценочных средств используется шкала оценивания, приведенная в таблице 4.

Дихотомическая шкала оценивания используется при проведении текущего контроля успеваемости студентов: при проведении собеседования, при приеме эссе, реферата, а также может быть использована в целях проведения такой формы промежуточной аттестации, как зачет (шкала приводится для всех оценочных средств из таблицы 3).

Таблица 5

Показатели оценивания	Описание в соответствии с критериями оценивания	Оценка знаний, умений, навыков и опыта	Оценка по дихотоми- ческой шкале
Высокий уровень освоения	Демонстрирует полное понимание проблемы. Требования по всем критериям выполнены	«очень высокая», «высокая»	«зачтено»
Базовый уровень освоения	Демонстрирует значительное понимание проблемы. Требования по всем критериям выполнены	«достаточно высокая», «выше средней», «базовая»	«зачтено»
Минимальный уровень освоения	Демонстрирует частичное понимание проблемы. Требования по большинству критериев выполнены	«средняя», «ниже средней», «низкая», «минимальная»	«зачтено»
Недостаточный уровень освоения	Демонстрирует небольшое понимание проблемы. Требования по многим критериям не выполнены	«очень низкая», «примитивная»	«незачтено»

4. Типовые контрольные задания, иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

4.1.Оценочные средства промежуточной аттестации

Оценочные средства промежуточной аттестации по дисциплине представлены в Приложении 1.

4.2.Формирование тестового задания промежуточной аттестации Аттестация №1

В экзаменационном билете присутствует 1 вопрос теоретической и практической направленности. Теоретические вопросы позволяют оценить уровень знаний и частично - умений, практические - уровень умений и владения компетенцией.

Примерный перечень заданий, выносимых на промежуточную аттестацию, разрешенных учебных и наглядных пособий, средств материально-технического обеспечения и типовые практические задания (задачи):

По вопросу 1, компетенции ОПК-3,ПК-1

- 1 Изображения в видимом и инфракрасном, микроволновом, радиоволновом диапазонах.
- 2 Яркостные преобразования и пространственная фильтрация
- 3 Основы частотной фильтрации. Последовательность шагов частотной фильтрации .
- 4 Эрозия и дилатация. Размыкание и замыкание. Некоторые основные алгоритмы полутоновой морфологии
- 5 Простые методы обнаружения контурных перепадов. Более совершенные методы обнаружения контуров

6 Основы распознавания 3D изображений. Стерео зрение. Проекционные методы. Представленный по каждому вопросу перечень заданий является рабочей моделью для генерирования экзаменационных билетов.

4.3. Развернутые критерии выставления оценки

Таблица 6

Тип	Показатели оценки			
вопроса	5	4	3	2
Теорети- ческие вопросы	тема разносторонне проанализирована, ответ полный, ошибок нет, предложены обоснованные аргументы и приведены примеры эффективности аналогичных решений	тема разносторонне раскрыта, ответ полный, допущено не более 1 ошибки, предложены обоснованные аргументы и приведены примеры эффективности аналогичных решений	тема освещена поверхностно, ответ полный, допущено более 2 ошибок, обоснованных аргументов не предложено	ответы на вопрос билета практически не даны
Практи- ческие вопросы	задание выполнено без ошибок, студент может дать все необходимые пояснения, сделать выводы	задание выполнено без ошибок, но студент не может пояснить ход выполнения и сделать необходимые выводы ответы даны на	задание выполнено с одной ошибкой, при ответе на вопрос ошибка замечена и исправлена самостоятельно	задание невыполнено или выполнено с двумя и более ошибками, пояснения к ходу выполнения недостаточны ответы на
Дополни- тельные вопросы	ответы даны на все вопросы, показан творческий подход	все вопросы, творческий подход отсутствует	дополнительные вопросы ошибочны (2 и более ошибок)	дополнительные вопросы практически отсутствуют
Уровень освоения	высокий	базовый	минимальный	недоста- точный

Для получения оценки «зачтено» студент должен показать уровень освоения всех компетенций, предусмотренных программой данной дисциплины, не ниже минимального.

4.4.Комплект экзаменационных билетов

Комплект экзаменационных билетов ежегодно обновляется и формируется перед зачетом.

Развернутые критерии выставления оценки за зачет содержатся в таблице 5.

5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и/или опыта деятельности, характеризующих этапы формирования компетенций

5.1. Методические материалы для текущего контроля успеваемости

Текущий контроль предусматривает систематическое оценивание процесса обучения, с учетом необходимости обеспечения достижения обучающимися планируемых результатов обучения по дисциплине (уровня сформированности знаний, умений, навыков, компетенций), а также степени готовности обучающихся к профессиональной деятельности. Система текущего контроля успеваемости и промежуточной аттестации студентов предусматривает решение следующих задач:

- оценка качества освоения студентами основной профессиональной образовательной программы;
- аттестация студентов на соответствие их персональных достижений поэтапным требованиям соответствующей основной профессиональной образовательной программы;
- поддержание постоянной обратной связи и принятие оптимальных решений в управлении качеством обучения студентов на уровне преподавателя, кафедры, факультета и университета.

В начале учебного изучения дисциплины преподаватель проводит входной контроль знаний студентов, приобретённых на предшествующем этапе обучения.

Задания, реализуемые только при проведении текущего контроля

Собеседование - это средство контроля, организованное как специальная беседа преподавателя со студентом на темы, связанные с изучаемой дисциплиной, и рассчитанное на выявление объема знаний студента по определенному разделу, теме, проблеме и т.п., соответствующих освоению компетенций, предусмотренных рабочей программой дисциплины.

Проблематика, выносимая на собеседование, определяется преподавателем в заданиях для самостоятельной работы студента, а также на семинарских и практических занятиях. В ходе собеседования студент должен уметь обсудить с преподавателем соответствующую проблематику на уровне диалога и показать установленный уровень владения компетенциями.

5.2. Методические материалы для промежуточной аттестации

Форма промежуточной аттестации по дисциплине - зачет

Форма проведения зачета: устная

При подготовке к ответу на зачете студент, как правило, ведет записи в листе устного ответа, который затем (по окончании зачета) сдается экзаменатору.

Экзаменатору предоставляется право задавать обучающимся дополнительные вопросы в рамках программы дисциплины текущего семестра, а также, помимо теоретических вопросов, давать задачи, которые изучались на практических занятиях.

Основой для определения оценки служит уровень усвоения студентами материала, предусмотренного рабочей программой дисциплины. Знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования

компетенций у обучающихся, определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» или «зачтено», «незачтено».

Выбор формы оценивания определяется целями и задачами обучения. В числе применяемых форм оценивания выделяют интегральную и дифференцируемую оценку, а также самоанализ и самоконтроль студента. Источники информации, которые используются при применении разных форм оценивания:

- работы обучающихся: домашние задания, презентации, отчеты, дневники, эссе и т.п.:
- результаты индивидуальной и совместной деятельности студентов в процессе обучения;
- результаты выполнения контрольных работ, тестов;
- другие источники информации.

Для того чтобы оценка выполняла те функции, которые на нее возложены как на характеристику этапов формирования компетенций у обучающихся, необходимо соблюдение следующих базовых принципов оценивания:

- непрерывность процесса оценивания;
- оценивание должно быть критериальным, основанным на целях обучения;
- критерии выставления оценки и алгоритм ее выставления должны быть заранее известны;
- включение обучающихся в контрольно-оценочную деятельность.

Конечный результат обучения (с точки зрения соответствия его заявленным целям) в высокой степени определяется набором критериальных показателей, которые используются в процессе оценки.

Студенту, использующему в ходе зачета неразрешенные источники и средства для получения информации, выставляется неудовлетворительная оценка. В случае неявки студента на зачет, преподавателем делается в экзаменационной ведомости отметка «не явился».