МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Кафедра	Электроники и схемотехники
_	(полное наименование кафедры)

УТВЕРЖДЕН

на заседании кафедры № 6 от 30.04.2024

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

Физические основы электроники сверхвысоких частот и оптического диапазона (наименование дисциплины)

11.03.04 Электроника и наноэлектроника (код и наименование направления подготовки /специальности/)

Промышленная электроника (направленность / профиль образовательной программы)

1. Общие положения

Фонд оценочных средств (ФОС) по дисциплине используется в целях нормирования процедуры оценивания качества подготовки и осуществляет установление соответствия учебных достижений запланированным результатам обучения и требованиям образовательной программы дисциплины.

Предметом оценивания являются знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций у обучающихся.

Процедуры оценивания применяются в процессе обучения на каждом этапе формирования компетенций посредством определения для отдельных составных частей дисциплины методов контроля - оценочных средств.

Основным механизмом оценки качества подготовки и формой контроля учебной работы студентов являются текущий контроль успеваемости и промежуточная аттестация. Общие требования к процедурам проведения текущего контроля и промежуточной аттестации определяет внутренний локальный акт университета: Положение о текущем контроле успеваемости и промежуточной аттестации обучающихся. При проведении текущего контроля успеваемости и промежуточной аттестации студентов используется ФОС.

1.1. Цель и задачи текущего контроля студентов по дисциплине.

Цель текущего контроля - систематическая проверка степени освоения программы дисциплины «Физические основы электроники сверхвысоких частот и оптического диапазона», уровня достижения планируемых результатов обучения знаний, умений, навыков, в ходе ее изучения при проведении занятий, предусмотренных учебным планом.

Задачи текущего контроля:

- 1. обнаружение и устранение пробелов в освоении учебной дисциплины;
- 2. своевременное выполнение корректирующих действий по содержанию и организации процесса обучения;
- 3. определение индивидуального учебного рейтинга студентов;
- 4. подготовка к промежуточной аттестации.

В течение семестра при изучении дисциплины реализуется традиционная система поэтапного оценивания уровня освоения. За каждый вид учебных действий студенты получают оценку.

1.2. Цель и задачи промежуточной аттестации студентов по дисциплине.

Цель промежуточной аттестации – проверка степени усвоения студентами учебного материала, уровня достижения планируемых результатов обучения и сформированности компетенций на момент завершения изучения дисциплины.

Промежуточная аттестация проходит в форме экзамена.

Задачи промежуточной аттестации:

- 1. определение уровня освоения учебной дисциплины;
- 2. определение уровня достижения планируемых результатов обучения и сформированности компетенций;
- 3. соотнесение планируемых результатов обучения с планируемыми результатами освоения образовательной программы в рамках изученной дисциплины.

2. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины

2.1.Перечень компетенций.

ПК-2 Способен аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения

ПК-3 Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования

2.2.Этапы формирования компетенций.

Таблица 1

Код компетенции	Этап формирования компетенции	Вид учебной работы	Тип контроля	Форма контроля
	теоретический (информационный)	лекции, самостоятельная работа	текущий	собеседование, тест
ПК-2, ПК-3	практико-ориентированный	практические (лабораторные) занятия, самостоятельная работа	текущий	тест
	практико-ориентированный	курсовая работа	промежу- точный	защита работы
	оценочный	аттестация	промежу- точный	экзамен

Применяемые образовательные технологии определяются видом контактной работы.

2.3.Соответствие разделов дисциплины формируемым компетенциям.

Этапами формирования компетенций является взаимосвязанная логическая последовательность освоения разделов (тем) учебной дисциплины.

Таблица 2

№	Раздел (тема)	Содержание раздела (темы) дисциплины	Коды
п/п	дисциплины		компетенций
1	Раздел 1. Физические основы вакуумной электроники СВЧ	Статический и динамический способы управления электронным потоком. Особенности колебательных систем СВЧ диапазона. Объемные резонаторы. Токи в электронных промежутках и во внешних цепях. Связь конвекционного и наведенного токов. Триоды и тетроды СВЧ. Двухрезонаторный пролетный клистрон. Устройство, принцип действия, основные характеристики и параметры. Многорезонаторные клистроны. Взаимодействие электронного потока с бегущей электромагнитной волной. Замедляющие системы. Лампы бегущей волны. Устройство, принцип действия, основные характеристики и параметры. Лампы обратной волны.	

2	Раздел 2. Физические основы полупроводниковой электроники СВЧ.	+	ПК-2, ПК-3
3	Раздел 3. Физические основы квантовой электроники.	Спонтанные и вынужденные квантовые переходы. Уширение энергетических уровней и спектральная ширина линии. Инверсия населенности энергетических уровней микрочастиц. Использование вынужденных переходов для усиления и генерации колебаний. Квантовые приборы СВЧ.Оптические резонаторы. Условие самовозбуждения лазера. Твердотельные лазеры. Полупроводниковый ДГС инжекционный лазер. Параметры и применение.	ПК-2, ПК-3

3. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

3.1.Описание показателей оценивания компетенций на различных этапах их формирования.

Таблица 3

Код компе- тенции	Показатели оценивания (индикаторы достижения компетенций)	Оценочные средства
ПК-2	ПК-2.1 Знает методики проведения исследований параметров и характеристик узлов, блоков; ПК-2.2 Умеет проводить исследования характеристик электронных приборов;	ТЕОРЕТИЧЕСКИЙ ЭТАП: собеседование, тест ПРАКТИКО- ОРИЕНТИРОВАННЫЙ ЭТАП: тест ОЦЕНОЧНЫЙ ЭТАП: билеты к экзамену
ПК-3	ПК-3.1 Знает принципы конструирования отдельных узлов и блоков электронных приборов; ПК-3.2 Умеет проводить оценочные расчеты характеристик электронных приборов; ПК-3.3 Владеет навыками подготовки принципиальных и монтажных электрических схем;	ТЕОРЕТИЧЕСКИЙ ЭТАП: собеседование, тест ПРАКТИКО- ОРИЕНТИРОВАННЫЙ ЭТАП: тест ОЦЕНОЧНЫЙ ЭТАП: билеты к экзамену

3.2.Стандартные критерии оценивания.

Критерии разработаны с учетом требований $\Phi \Gamma OC$ ВО к конечным результатам обучения и создают основу для выявления уровня сформированности компетенций:

минимального, базового или высокого.

Критерии оценки устного ответа в ходе собеседования:

- логика при изложении содержания ответа на вопрос, выявленные знания соответствуют объему и глубине их раскрытия в источнике;
- использование научной терминологии в контексте ответа;
- объяснение причинно-следственных и функциональных связей;
- умение оценивать действия субъектов социальной жизни, формулировать собственные суждения и аргументы по определенным проблемам;
- эмоциональное богатство речи, образное и яркое выражение мыслей.

Критерии оценки ответа за экзамен:

Для экзамена в устном виде употребимы критерии оценки устного ответа в ходе собеседования (см. выше)

Критерии оценки курсовой работы:

- Соответствие выполненной работы поставленным целям и задачам.
- Актуальность выбранной темы.
- Логичность построения выступления.
- Аргументация всех основных положений.
- Свободное владение материалом.
- Самостоятельность выводов.
- Прогнозирование путей решения поставленных проблем в целом и выстраивание перспектив дальнейшей работы над темой.
- Культура выступления (речевая культура, коммуникативная компетентность, владение аудиторией).
- Культура письменного оформления курсовой работы.

Критерии оценки лабораторной работы:

- Выполнение лабораторной работы (подготовленность к выполнению, осознание цели работы, методов собирания схемы, проведение измерений и фиксирования их результатов, прилежание, самостоятельность выполнения, наличие и правильность оформления необходимых материалов для проведения работы схема соединений, таблицы записей и т.п.);
- Оформление отчета по лабораторной работе (аккуратность оформления результатов измерений, правильность вычислений, правильность выполнения графиков, векторных диаграмм и др.);
- Правильность и самостоятельность выбора формул для расчетов при оформлении результатов работы;
- Правильность построения графиков, умение объяснить их характер;
- Правильность построения векторных диаграмм, умение их строить и понимание того, что они значат;
- Ответы на контрольные вопросы к лабораторной работе.

Критерии оценки тестового контроля знаний:

студентом даны правильные ответы на

- 91-100% заданий отлично,
- 81-90% заданий хорошо,

- 71-80% заданий удовлетворительно,
- 70% заданий и менее неудовлетворительно.

Общие критерии оценки работы студента на практических занятиях:

- Отлично активное участие в обсуждении проблем каждого семинара, самостоятельность ответов, свободное владение материалом, полные и аргументированные ответы на вопросы семинара, участие в дискуссиях, твёрдое знание лекционного материала, обязательной и рекомендованной дополнительной литературы, регулярная посещаемость занятий.
- Хорошо недостаточно полное раскрытие некоторых вопросов темы, незначительные ошибки в формулировке категорий и понятий, меньшая активность на семинарах, неполное знание дополнительной литературы, хорошая посещаемость.
- Удовлетворительно ответы отражают в целом понимание темы, знание содержания основных категорий и понятий, знакомство с лекционным материалом и рекомендованной основной литературой, недостаточная активность на занятиях, оставляющая желать лучшего посещаемость.
- Неудовлетворительно пассивность на семинарах, частая неготовность при ответах на вопросы, плохая посещаемость.

Порядок применения критериев оценки конкретизирован ниже, в разделе 4, содержащем оценочные средства для текущего контроля успеваемости и для проведения промежуточной аттестации студентов по данной дисциплине.

3.3.Описание шкал оценивания.

В процессе оценивания результатов обучения и компетенций на различных этапах их формирования при освоении дисциплины для всех перечисленных выше оценочных средств используется шкала оценивания, приведенная в таблице 4.

Дихотомическая шкала оценивания используется при проведении текущего контроля успеваемости студентов: при проведении собеседования, при приеме эссе, реферата, а также может быть использована в целях проведения такой формы промежуточной аттестации, как зачет (шкала приводится для всех оценочных средств из таблицы 3).

Таблица 5

Показатели оценивания	Описание в соответствии с критериями оценивания	Оценка знаний, умений, навыков и опыта	Оценка по балльной шкале
Высокий уровень освоения	Демонстрирует полное понимание проблемы. Требования по всем критериям выполнены	«очень высокая», «высокая»	«отлично»
Базовый уровень освоения	Демонстрирует значительное понимание проблемы. Требования по всем критериям выполнены	«достаточно высокая», «выше средней», «базовая»	«хорошо»
Минимальный уровень освоения	Демонстрирует частичное понимание проблемы. Требования по большинству критериев выполнены	«средняя», «ниже средней», «низкая», «минимальная»	«удовлетво- рительно»

Недостаточный уровень освоения	по многим критериям не	«очень низкая», «примитивная»	«неудовлетво- рительно»
ОСБОСПИИ	выполнены		

При проведении промежуточной аттестации студентов по данной дисциплине в форме экзамена используется пятибалльная шкала оценивания.

4. Типовые контрольные задания, иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

4.1.Оценочные средства промежуточной аттестации

Оценочные средства промежуточной аттестации по дисциплине представлены в Приложении 1.

4.2.Формирование тестового задания промежуточной аттестации Аттестация №1

В экзаменационном билете присутствует 10 вопросов теоретической и практической направленности. Теоретические вопросы позволяют оценить уровень знаний и частично - умений, практические - уровень умений и владения компетенцией.

Примерный перечень заданий, выносимых на промежуточную аттестацию, разрешенных учебных и наглядных пособий, средств материально-технического обеспечения и типовые практические задания (задачи):

По вопросу 1, компетенции ПК-2

Почему в СВЧ диапазоне не удается использовать традиционные линии передачи и колебательные контура? а) потому, что их размеры оказываются слишком большими;

- 1 б) потому, что с ростом частоты резко увеличиваются потери на излучение; в) потому, что их размеры оказываются слишком маленькими; г) вопрос поставлен некорректно.
 - В чем состоит главное отличие динамического метода управления электронным потоком от традиционного электростатического метода? а) в том, что взаимодействие электронов с электрическим полем происходит в открытом
- 2 пространстве; б) в том, что взаимодействие электронов с электрическим полем происходит безынерционно; в) в том, что взаимодействие электронов с электрическим полем происходит в закрытом пространстве; г) в предварительном ускорении электронов до их влета в пространство их взаимодействия с электрическим полем.

По вопросу 2, компетенции ПК-2

- 1 В каком качестве используются в электронике пролетные клистроны? a) усилителя; б) выпрямителя; в) аттенюатора; г) линии задержки.
 - Какой из перечисленных электровакуумных приборов используется в качестве
- 2 широкополосного усилителя? а) двухрезонаторный пролетный клистрон; б) лампа обратной волны; в) лампа бегущей волны; г) отражательный клистрон.

По вопросу 3, компетенции ПК-2

В чем заключается основное преимущество биполярного транзистора с диодом Шотки по сравнению с базовым биполярным транзистором в цифровых схемах? а) в

- 1 более высоком быстродействии вследствие исключения возможности перехода транзистора в режим насыщения; б) в более высокой температурной стойкости; в) в более простой технологии изготовления; г) в более высоких усилительных свойствах.
- 2 На подложке из какого материала изготавливается полевой транзистор с затвором Шотки (ПТШ)? a) германия; б) кремния; в) арсенида галлия; г) фосфида индия.

По вопросу 4, компетенции ПК-2

Почему использование подложки из арсенида галлия для создания полевого транзистора с затвором Шотки (ПТШ) позволяет существенно повысить его быстродействие по сравнению с подложкой из кремния? а) потому, что коэффициент диффузии электронов в арсениде галлия значительно превосходит коэффициент

- 1 диффузии электронов в кремнии; б) потому, что подвижность электронов в арсениде галлия значительно превосходит подвижность электронов в кремнии; в) потому, что арсенид галлия имеет меньшую теплопроводность по сравнению с кремнием; г) потому, что подвижность дырок в арсениде галлия значительно превосходит подвижность дырок в кремнии.
- В качестве какого элемента структуры гетероструктурного биполярного транзистора используется гетеропереход? а) коллекторного перехода; б) базы; в) эмиттерного перехода; г) вопрос поставлен некорректно.

По вопросу 5, компетенции ПК-2

Какие носители заряда называются горячими? а) температура которых превышает 300 K; б) температура которых превышает 500 K; в) температура которых превышает 800 K; г) энергия которых значительно превышает среднюю тепловую энергию носителей в состоянии равновесия.

Какие два важнейших физических эффекта проявляются в полупроводниках при достаточно высокой напряженности электрического поля? а) разрушение

2 кристаллической решетки; б) ударная ионизация атомов кристаллической решетки; в) насыщение дрейфовой скорости носителей заряда; г) рекомбинация носителей заряда.

По вопросу 6, компетенции ПК-2

Какие два физических эффекта лежат в основе принципа действия генератора на лавинно-пролетном диоде? а) насыщение дрейфовой скорости носителей заряда; б) ионизация атомов примеси; в) тепловая генерация носителей заряда; г) ударная ионизация атомов кристаллической решетки.

Укажите важнейший элемент конструкции генератора на лавинно-пролетном диоде. а) линия задержки. б) аттенюатор; в) резонатор; г) замедляющая система.

По вопросу 7, компетенции ПК-2,ПК-3

В каком полупроводнике возникает эффект Ганна? а) в легированном донорной примесью; б) в легированном акцепторной примесью; в) в двухдолинном (многодолинном); г) в собственном.

Какие два из указанных диодов относятся к классу приборов с отрицательным

2 дифференциальным сопротивлением? а) варикап; б) диод Ганна; в) стабилитрон; г) лавинно-пролетный диод.

По вопросу 8, компетенции ПК-2,ПК-3

Какое состояние называется состоянием с инверсией населенности энергетических уровней? а) состояние, при котором населенность более высокого уровня ниже населенности более низкого уровня; б) состояние, при котором населенность более высокого уровня равна населенности более низкого уровня; в) состояние, при котором населенность более высокого уровня выше населенности более низкого уровня; г) такое состояние не может существовать.

2 Какие виды переходов используются в квантовых генераторах (лазерах)? а) спонтанные; б) вынужденные; в) безызлучательные; г) релаксационные.

По вопросу 9, компетенции ПК-3

- Каким образом в лазерах создается положительная обратная связь? а) с помощью
- 1 внешней цепи обратной связи; б) с помощью оптического резонатора; в) с помощью фазовращателя; г) с помощью линии задержки.
 - Выполнение каких двух условий необходимо для возникновения генерации в
- 2 лазерах? а) наличие нагрузки; б) балланс амплитуд; в) балланс фаз; г) наличие электрического поля.

По вопросу 10, компетенции ПК-3

В каком случае два колебания могут считаться когерентными? а) если амплитуда каждого из них остается неизменной во времени; б) если частота каждого из них

- 1 остается неизменной во времени; в если фаза каждого из них остается неизменной во времени; г) если амплитуда, частота и фаза каждого из них остаются неизменными во времени.
 - Каким образом создается инверсия населенностей в инжекционных полупроводниковых лазерах? а) за счет электрической накачки от тлеющего
- 2 разряда; б) за счет накачки от йод- вольфрамовой лампы; в) за счет инжекции носителей заряда через p-n-переход (гетеропереход); г) за счет накачки от светодиода.

Представленный по каждому вопросу перечень заданий является рабочей моделью для генерирования экзаменационных билетов.

4.3. Развернутые критерии выставления оценки

Таблица 6

Тип	Показатели оценки			
вопроса	5	4	3	2
	тема	тема	тема освещена	ответы на
	разносторонне	разносторонне	поверхностно,	вопрос билета
	проанализирована,	раскрыта, ответ	ответ полный,	практически не
	ответ полный,	полный,	допущено более	даны
	ошибок нет,	допущено не	2 ошибок,	
Теорети-	предложены	более 1 ошибки,	обоснованных	
ческие	обоснованные	предложены	аргументов не	
вопросы	аргументы и	обоснованные	предложено	
Бопросы	приведены	аргументы и		
	примеры	приведены		
	эффективности	примеры		
	аналогичных	эффективности		
	решений	аналогичных		
		решений		
	задача решена без	задача решена	задача решена с	задача не
	ошибок, студент	без ошибок, но	одной ошибкой,	решена или
Практи-	может дать все	студент не	при ответе на	решена с двумя
ческие	необходимые	может пояснить	вопрос ошибка	и более
вопросы	пояснения к	ход решения и	замечена и	ошибками,
Ponboom	решению, сделать	сделать	исправлена	пояснения к
	выводы	необходимые	самостоятельно	ходу решения
		выводы		недостаточны

		ответы даны на	ответы на	ответы на
Дополни-	ответы даны на все	все вопросы,	дополнительные	дополнительные
тельные	вопросы, показан	творческий	вопросы	вопросы
вопросы	творческий подход	подход	ошибочны (2 и	практически
		отсутствует	более ошибок)	отсутствуют
Уровень	высокий	базовый	минимальный	недоста-
освоения	рысокии	оазовыи	мипимальпыи	точный

Для получения оценки «отлично» студент должен показать высокий уровень освоения всех компетенций, предусмотренных программой данной дисциплины, оценки «хорошо» - базовый, оценки «удовлетворительно» - минимальный. В случае разноранговых оценок определения уровня освоения каждой из компетенций, общая оценка знаний по дисциплине детерминируется как:

- Отлично, если ответ на практический вопрос и более половины всех ответов на вопросы, включая дополнительные, оценены на «5», остальные на «4»
- Хорошо, более половины ответов оценены на «4», остальные на «5»; либо ответ на один теоретический вопрос оценен на «3», остальные на «4» и «5»
- Удовлетворительно, если два и более ответов на вопросы билета оценены на «3», и ни один из ответов не определен как «2»
- Неудовлетворительно, если ответ на один из вопросов оценен на «2»

4.4.Комплект экзаменационных билетов

Комплект экзаменационных билетов ежегодно обновляется и формируется перед экзаменом.

Развернутые критерии выставления оценки за экзамен содержатся в таблице 5.

5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и/или опыта деятельности, характеризующих этапы формирования компетенций

5.1. Методические материалы для текущего контроля успеваемости

Текущий контроль предусматривает систематическое оценивание процесса обучения, с учетом необходимости обеспечения достижения обучающимися планируемых результатов обучения по дисциплине (уровня сформированности знаний, умений, навыков, компетенций), а также степени готовности обучающихся к профессиональной деятельности. Система текущего контроля успеваемости и промежуточной аттестации студентов предусматривает решение следующих задач:

- оценка качества освоения студентами основной профессиональной образовательной программы;
- аттестация студентов на соответствие их персональных достижений поэтапным требованиям соответствующей основной профессиональной образовательной программы;
- поддержание постоянной обратной связи и принятие оптимальных решений в управлении качеством обучения студентов на уровне преподавателя, кафедры, факультета и университета.

В начале учебного изучения дисциплины преподаватель проводит входной

контроль знаний студентов, приобретённых на предшествующем этапе обучения.

Задания, реализуемые только при проведении текущего контроля

Собеседование - это средство контроля, организованное как специальная беседа преподавателя со студентом на темы, связанные с изучаемой дисциплиной, и рассчитанное на выявление объема знаний студента по определенному разделу, теме, проблеме и т.п., соответствующих освоению компетенций, предусмотренных рабочей программой дисциплины.

Проблематика, выносимая на собеседование, определяется преподавателем в заданиях для самостоятельной работы студента, а также на семинарских и практических занятиях. В ходе собеседования студент должен уметь обсудить с преподавателем соответствующую проблематику на уровне диалога и показать установленный уровень владения компетенциями.

Тест - система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.

5.2. Методические материалы для промежуточной аттестации

Форма промежуточной аттестации по дисциплине - курсовая работа, экзамен

Курсовая работа - продукт научно-исследовательской работы студента или аспиранта, получаемый в результате решения комплекса задач, предполагающих выполнение реферативных, расчетных и исследовательских заданий. Позволяет оценить:

- умения обучающихся ориентироваться в информационном пространстве и самостоятельно собирать материал, обрабатывать, анализировать его, делать соответствующие выводы;
- уровень сформированности навыков практического и творческого мышления, аналитических, исследовательских навыков.

Форма проведения экзамена: устная

В аудиторию, где принимается экзамен, приглашаются студенты из расчета не более пяти экзаменующихся на одного экзаменатора.

Хорошо успевающим студентам, выполнившим все виды работ, предусмотренные рабочей программой дисциплины и не имеющим задолженности, деканатом факультета может быть разрешена сдача экзаменов досрочно с согласия экзаменатора, без освобождения студентов от текущих учебных занятий. Досрочная сдача экзаменов проводится не ранее, чем за 1 месяц до начала сессии. В период сессии досрочная сдача не разрешается. Решение о досрочной сдаче принимает декан факультета на основе личного заявления студента, согласованного с преподавателями дисциплин, выносимых на сессию.

Для подготовки к ответу на экзамене студенту рекомендуется использовать Перечень теоретических вопросов (заданий), выносимых на экзамен, разрешенных учебных и наглядных пособий, средств материально-технического обеспечения и типовые практические задания (задачи), перечисленных в п.4.2.

В экзаменационный билет входит теоретических вопроса: один - из минимального уровня, - из базового и одно практическое задание, характеризующее высокий уровень сформированности компетенций. Время подготовки ответа при сдаче в устной форме должно составлять не менее 40 минут (по желанию

обучающегося ответ может быть досрочным). Время ответа - не более 15 минут.

Экзаменатору предоставляется право задавать обучающимся дополнительные вопросы в рамках программы дисциплины текущего семестра, а также, помимо теоретических вопросов, давать задачи, которые изучались на практических занятиях.

Основой для определения оценки служит уровень усвоения студентами материала, предусмотренного рабочей программой дисциплины. Знания, умения, навыки и (или) опыт деятельности, характеризующие этапы формирования компетенций у обучающихся, определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» или «зачтено», «незачтено».

Выбор формы оценивания определяется целями и задачами обучения. В числе применяемых форм оценивания выделяют интегральную и дифференцируемую оценку, а также самоанализ и самоконтроль студента. Источники информации, которые используются при применении разных форм оценивания:

- работы обучающихся: домашние задания, презентации, отчеты, дневники, эссе и т.п.;
- результаты индивидуальной и совместной деятельности студентов в процессе обучения;
- результаты выполнения контрольных работ, тестов;
- другие источники информации.

Для того чтобы оценка выполняла те функции, которые на нее возложены как на характеристику этапов формирования компетенций у обучающихся, необходимо соблюдение следующих базовых принципов оценивания:

- непрерывность процесса оценивания;
- оценивание должно быть критериальным, основанным на целях обучения;
- критерии выставления оценки и алгоритм ее выставления должны быть заранее известны;
- включение обучающихся в контрольно-оценочную деятельность.

Конечный результат обучения (с точки зрения соответствия его заявленным целям) в высокой степени определяется набором критериальных показателей, которые используются в процессе оценки.

Студенту, использующему в ходе экзамена неразрешенные источники и средства для получения информации, выставляется неудовлетворительная оценка. В случае неявки студента на экзамен, преподавателем делается в экзаменационной ведомости отметка «не явился».Пересдача экзамена в целях повышения положительной оценки не допускается.